GENOMIC SELECTION OF AGRONOMIC IMPORTANT TRAITS IN SPRING BARELY

AHMED JAHOOR

Genomic selection

- The idea of "genomic selection, (GS)" was proposed by Meuwissen et al. (2001)
 - Omit significance testing and to use estimates of genetic marker effects.

 GS is developed to accurately predict the genomic breeding value of lines by using genome-wide markers data.

 Dense marker coverage is needed to maximize LD between markers and QTLs related to the trait of interest.

GS advantage

- In GS, the underlying genetic control and biological function is not known (the cost of obtaining that knowledge is not needed)
- Most important advantages are reductions in the length of the selection cycle and phenotyping cost resulting in greater genetic gain per year.
- Genomic information may not be as accurate as real phenotypes, but it may be cheaper and faster
- One maker-genotyping can predict many traits
- Improvement of complex traits
- Better protection against copying by competitors (improvement is based on many makers)

Training set

Pedigree information

Genotypic information

Phenotypic information

Bioinformatics tools

Identifying the genome associated with the expected trait expression.

Validation set

Selection based on genotyping only

Nordic Seed

Cultivating Value

MODELS

Yield and moisture (several locations and reps)

```
pheno = LYT + idg + id + lyid + lyx + e
*y is year
```

- Heading and height (one location no reps)
 pheno = LYT + idg + lyid + e
- Single line cross-validation

Genomic selection: blending markers and phenotypic selection

Classical MAS:

- One or a few genetic markers
- Quick breeding cycles (Backcrosses) to move positive alleles from one variety to another
- Traits affected by few gene,e.g. disease resistance genes

Phenotypic selection:

- Only use phenotypes
- Need large numbers of test crosses in large field trials
- Long and multi-stage breeding cycle
- Traits affected by many genes, e.g. yield

Genomic selection:

- Join many markers and phenotypes
- Combine quick breeding cycles and less field trials
- Target traits affected by few or many genes

Genomic Selection in plant breeding

Genotyping

Application of prediction model on validation population

Phenotyping

Genomic estimation of breeding values (GEBV) for validation population

Selection of lines with highest GEBV

GS advantage

- Most important advantages are reductions in the selection cycle length and phenotyping cost at the same time increasing genetic gain per year.
- In GS, the underlying genetic control and biological function is not known (the cost of obtaining that knowledge is not needed).
- Genomic information may not be as accurate as real phenotypes, but it is cheaper and faster.
- Genomic selection can improve the complex and costly traits.
- Better protection against copying by competitors (improvement is based on many makers)

Phenotypic data

```
Year: 2013-2016, Locations: Abildgaard, Dyngby, Holeby
Grain quality (3 Loc, 1 rep)
   - 2.8 2.5 2.2 >2.5 >2.2 <2.2mm Protein % SW (kg/hl)
Malting quality (3 Loc, 1 rep)

    Extract yield Filtering speed Wort color ß-Glucan Viscosity Wort clearness

Disease
                    (1 Loc, 1 rep)

    Mildew Net Blotch Rust Rhynchosporium

Yield and moisture (3 Loc, 3 rep)
Straw breaking (1 Loc, 3 rep)
Necking (2 Loc, 1 rep)
Heading and height (1 Loc, 1 rep)
```


Data collection

Summary

- Theory of genomic selection sounds good
- The model of genomic selection in plants are mostly on place
- Applicability of genomic selection has to be proofed
- Future breeding based on genomic selection needs more results
- Saving resources and shortening of breeding cycle

Research and development group at Nordic Seed

- Ahmed Jahoor, Head of breeding and research
- Jihad Orabi, Head of molecular breeding
- Jens Due Jensen, Barley breeder
- Vahid Edriss, Post Doc. quantitative genetics / GS
- Nanna Hellum Nielsen, Post Doc. Malt quality/ GS
- Hanne Svenstrup, Laboratory technician

