
USING CWR:S IN FORAGE BREEDING

Merja Veteläinen, Boreal Plant Breeding Ltd., Finland

CONTENTS

- General aspects on using CWRs in plant breeding
- Forages
- Future perspectives

GENEPOOL CONCEPT

Primary GP1: Species, interfertile

Secondary GP2: All species that cross with GP1, with some fertility, gene transfer possible but may be difficult

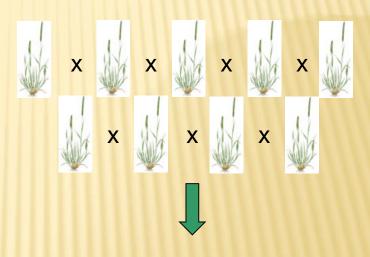
Tertiary GP3: Hybrids with GP1 anomalous, lethal or completely sterile, gene transfer not possible or require radical techniques

GENERAL ASPECTS ON USING CWR:S IN PLANT BREEDING

- Breeders hesitate to use CWRs in breeding programs, if not necessary
 - Disrubtion of agronomic performance and adaptation of the elite breeding pool, and useful co-adapted gene complexes
 - It takes a long time to introduce useful genes in the agronomically acceptable genetic background
 - Requires pre-breeding
 - Requires use of sophisticated methods when transferring genes/diversity from GP2 and GP3 to GP1

◀

HOWEVER, THERE ARE REASONS TO USE CWR:S


- To overcome historical bottle-necks in breeding
- Need to increase genetic gain for yield
- Need for new variation in the breeding programs for disease resistance, quality and adaptive traits

EASE OF UTLIZATION OF CWR:S FOR FORAGES

- Many temperate grasses crops belong to the genera that are rather closely related to each other
 - + E.g. Lolium and Festuca
 - + Hybridation feasible
- Relatively short breeding history: cultivated and wild forms have not diverged from each other so much as in other crops
- CWR:s may occur in sites where evolutionary forces benefit traits suitable for cultivation (e.g. trampling -> golf screens) -> directly useful breeding material

CASE OF FINNISH TIMOTHY VARIETIES

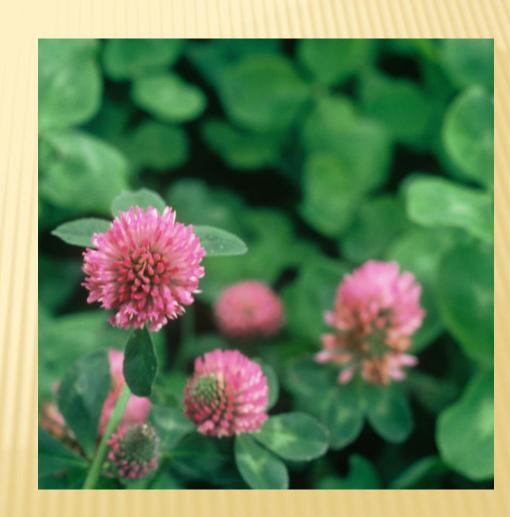
- Two biggest timothy varieties have been composed greatly from collected material
- Cv. Iki largest markets share in Finland 2003-2009
- Cv. Tuure largest market share since 2014

FUTURE PROSPECTS TO ENHANCE USE OF CWR:S IN FORAGE BREEDING

- Collection and evaluation projects together with gene banks and forage breeders
 - Breeders can select material for breeding purposes
 - Gene bank accessions characterized and evaluated

PPP Rye grass project members evaluating gene bank accessions in Jokioinen, Finland

FUTURE PROSPECTS...


- Describe collection site's eco-climate information with care
 - Utilsation for FIGS (the Focused Identification of Germplasm Strategy)
 - Easier trait mining: tolerance to environmental stresses, resistance traits

Ecogeographical Land Characterization (ELC) map developed by Parra-Quijano et al., 2011.

FUTURE PROSPECTS...

- Often random fraction of species variability has been either used to aliment active breeding pools or collected in gene banks
 - A great range of potentially useful genetic variation remains yet to be exploited

FUTURE PROCPECTS...

In situ conservation and utilisation:

- Prioritize ex situ
 samples for regionally
 important species for breeding?
- + Other ways to utilise in situ conservation for breeding?

CONCLUSIONS

- Forages are an ideal group to demonstrate the use of CWR:s in plant breeding
- Co-operation between gene banks and breeders leads to quick adoption of new germplasm
- Still need for new variation in breeding programs

THANK YOU FOR YOUR ATTENTION!

Red clover accessions from NordGen to be evaluated in Finland