

EuroPepLand – work planning

EUROPEPLAND— Implementing a trans-EUROpean PEPper LANDrace collection for resilient agriculture 31 October 2024, Almeria, Spain

Project tasks

Project start = 01 September 2024 Project end = 31 August 2026

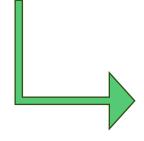
Task 1 – Core collection development (M1-M6)

Task 2 – Phenotyping and genotyping (M6-M18)

Task 3 – Data analysis and integration (M19-M24)

Task 4 – Meetings and dissemination (M1-M24)

Task 1 – Core collection development (M1-M6)


- 1. All Capsicum annuum
- 2. All landraces from Europe mainland 300 (Traditional cultivar/landrace)

mandatory

Accession Name	Accession N°	Country	Location (Region or coordinates)	Shape	Color at Maturity	Pungency
Papaccella	21-PT-41	Italy	Campania region	Round	Red	Sweet
Sigaretta	21-PT-163	Italy	Calabria region	elongated	Red	Pungent
Peperone di Senise	22-PT-101	Italy	40°08′N 16°17′E	conical	Red	Sweet

Biological status (if in EURISCO)	DOI

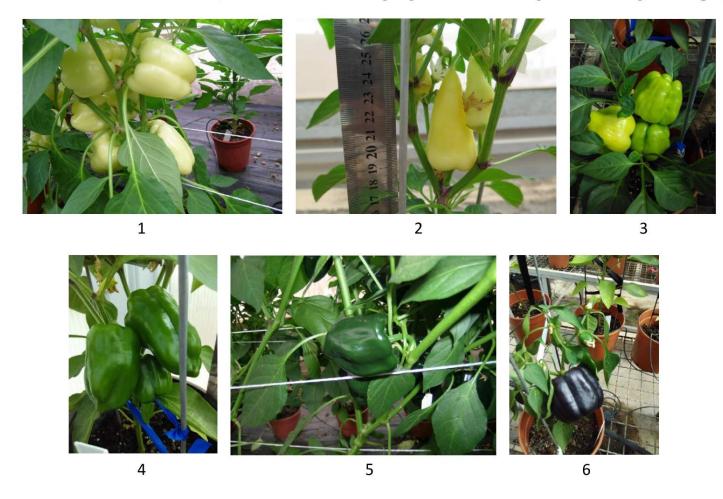
More details in the phenotyping section

- Define the collection
- Include broad diversity in terms of provenance and main traits

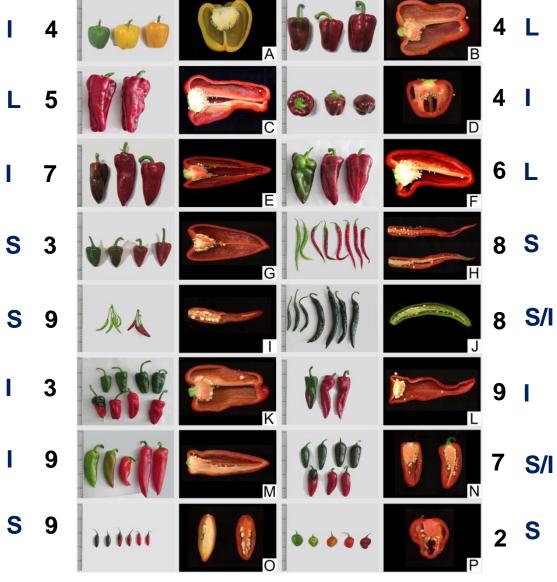
Accession Name	Accession N°	Shape	Color at Maturity	Color at Immature stage	Fruit size	Pungency
Papaccella	21-PT-41	Round	Red	Medium Green	Large	Sweet
Sigaretta	21-PT-163	elongated	Red	Medium Green	Small	Pungent
Peperone di Senise	22-PT-101	conical	Red	Light green	Intermediate	Sweet

- 1 Oblate
- 2 Circular
- 3 Cordate/heart-shape
- 4 Blocky
- 5 Rectangular
- 6 Trapezoidal
- 7 Conical
- 8 Elongated
- 9 Hornshaped

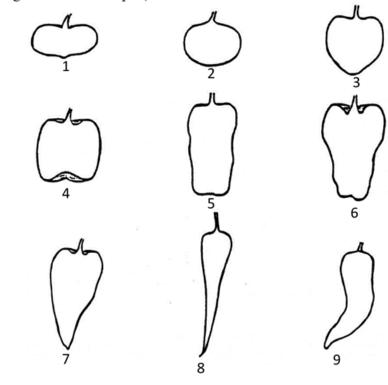
- 1 White
- 2 Lemon-yellow
- 3 Pale orange-yellow
- 4 Orange-yellow
- 5 Pale orange
- 6 Orange
- o Orange
- 7 Light red
- 8 Red
- 9 Dark red
- 10 Purple
- 11 Brown
- 12 Black


- Before ripening
- 1 White
- 2 Cream
- 3 Light Green
- 4 Medium Green
- 5 Dark Green
- 6 Purple
- 7. Other (e.g. orange)

- 1 Large > 100 g
- 2 Intermediate 20g 100g
- 3 Small < 20 g


- To perform on the EUROPEPLAND collection

7. External immature fruit color (1. white/ 2. cream/ 3. light green/ 4. medium green/ 5. dark green/ 6. purple).



Dias et al., 2020 https://doi.org/10.1016/j.scienta.2020.109245

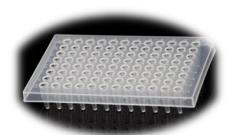
3. heart-shape

9. Fruit predominant shape (1. oblate/ 2. circular/ 3. cordate/ 4. blocky/ 5. rectangular/ 6. trapezoidal/ 7. conical/ 8. elongated/ 9. hornshaped).

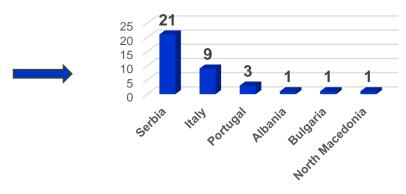
L = Large I = Intermediate S = Small

- Two partners will perfor salt stress (CNR-IBBR) and biochemical analysis (CREA IT)
- > Will focus of few accessions once the core collection has been established

> Material to be selected in the middle of next year


➤ Provide new information on the quality and resilience of selected genotypes (< 10)

15K for DNA isolation, genotyping and phenotyping (CREA)


Position	Material	Item	Volume	Price/Plate (€)	Total (€)
10	IL CA010 GL	10K Pepper array	1 plate	3.120,00	3.120,00

4 plates = 384 samples

EU-LRs genotyped from EVA

420

Core collection development

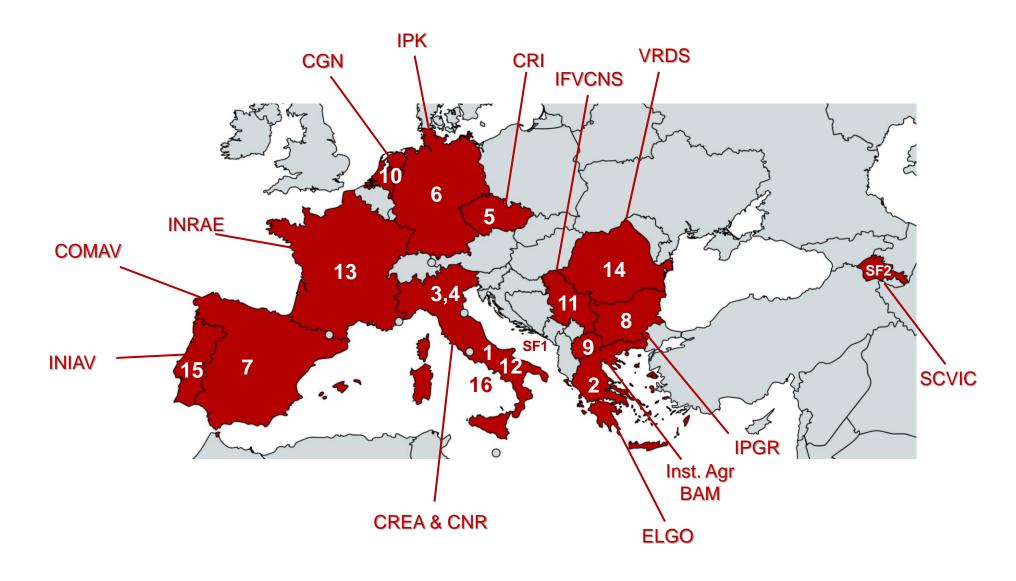
> A template will be shared among partners

4-8 November

➤ Each partner provide the list of potential material to exchange considering the availability of seeds

End of November

- > Define the collection based on the diversity
- Geographical (1st priority)
- Phenotypic (2nd priority)


End of Year

■ Materials providing

First qu

First quarter of 2025

☐ Balance across European regions (East, Continental, Mediterranean)

Material exchange

- > Seeds are preferred to be exchanged by MTA or sMTA
- > 15 seeds high germinability will be fine
- ➤ Bulk leaves from at least 3 representative plantlets
- ➤ Harvest in ice 3-4 young leaves from young plantlets (after 5-6 true leaves) -> put in eppendorf and freeze at -80 °C
- > Send the tubes in dry ice to CREA

- ➤ Bad quality DNA > genotyping error
- ☐ Only if very few seeds are available
- ☐ Shipping tubes in dry ice or in sealed vacuum bags

Task 3 – Data integration an analysis

DOI:

- Unique and permanent digital identifier of a (digital) object
- Metadata for the description of the object
- Name resolution by a resolver system, e.g. doi.org

Advantages:

- Quasi-standard for PGR material
- High acceptance in the scientific community
- Allows traceability when material is distributed, e.g. to another genebank
- Enables insights into the use of PGR, e.g. from publications
- Hierarchical relationships possible, e.g. for derived material (SSD line from genebank accession)

Assignment of DOIs

Assignment via EURISCO (to be checked)

Each partner provide by itself or centralized
TBD

Task 3 – Data integration an analysis

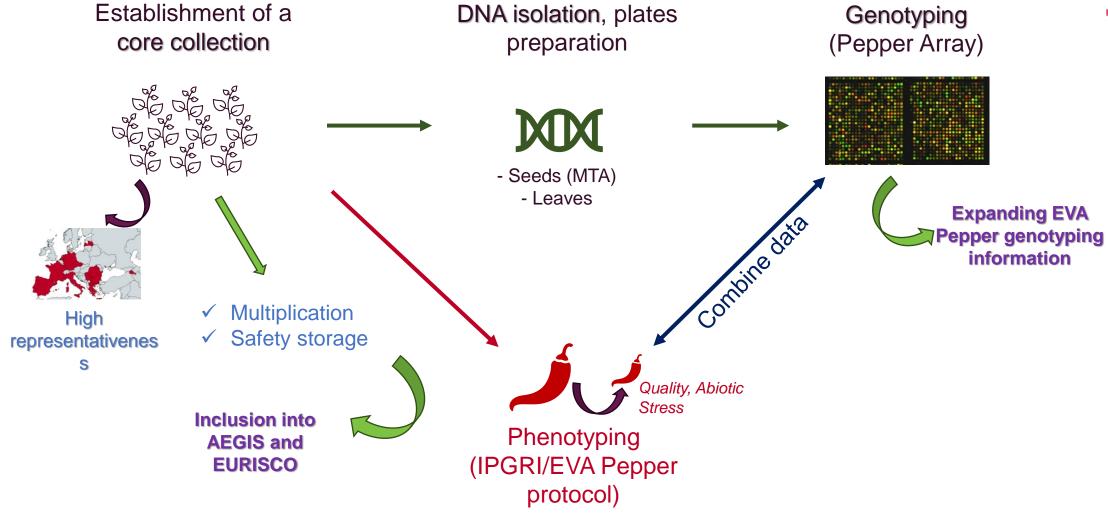
- ☐ Check data quality
- ☐ Filtering SNP data
- ☐ Genomic diversity and Population STRUCTURE
- □ Phylogenesys
- ☐ Integration of phenotypic data
- ☐ Additional analysis (e.g. GWA, genomic regions under selection, etc)

Task 4 – Meetings and dissemination (M1-M24)

➤ Kick-off meeting (hybrid) – 31 October 2024

> Interim meeting next year same period

Final meeting June-July 2026


☐ Any brief meeting if needed to discuss any issue

Time scale of activities

Task	Year		20	24			2025										2026								
Iask	Main activity/Month	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8
T1	Core collection establishment																								
T2	Seeds/Leaf exchange																								
T2	DNA extraction																								
T2	Genotyping																								
T2	Plant grown and phenotyping																								
Т3	Data integration/analysis																								
T4	Meetings																								

Points of discussion

- ➤ Germplasm selection
- > Supplying plant material for genotyping
- Phenotyping activities
- ➤ Data integration in EURISCO database and DOI
- ➤ Safety storage of the EUROPEPLAND collection